UG (except BBA) CET Sample Paper

MATHEMATICS: (50 Questions)

1. If n is a positive integer , then $\mathrm{n}^{3}+2 \mathrm{n}$ is divisible by :
A. 2
B. 6
C. 15
D. 3
2. If $x+y=k$ is a normal to $y^{2}=12 x$, then $k=$
A. 3
B. 6
C. 9
D. none of the above
3. The number of proper subsets of $\{1,2,3\}$ is
A. 8
B. 7
C. 6
D. 5
4. A survey shows that 63% of the Americans like cheese and 76% like apples. If $\mathrm{x} \%$ of the Americans like both cheese and apples , then
A. $x=39$
B. $x=63$
C. $39 \leq x \leq 63$
D. none of these
5. The conjugate of $1 /(2+i)$ is
A. $(2+i) / 5$
B. $(2-\mathrm{i}) / 5$
C. $5 /(2-i)$
D. $5 /(2+i)$
6. If $x+x^{-1}=2 \cos (p)$ then $x^{n}+x^{-n}=$
A. $2 \cos (n p)$
B. $2 \sin (n p)$
C. $\operatorname{Cos}(\mathrm{np})$
D. $\operatorname{Sin}(\mathrm{np})$
7. What is the equation of a line passing through $(0,1)$ and making an angle with the y-axis equal to the inclination of the line $x-y=4$ with the x-axis?
A. $y=x+1$
B. $x=y+1$
C. $2 \mathrm{x}=\mathrm{y}+2$
D. none of the above
8. What is $[[\sin (a) / \operatorname{cosec}(a)]+[\cos (a) / \sec (a)]]$ equal to?
A. 2
B. 1
C. 0.5
D. 0.4
9. What is the distance between the lines $3 x+4 y=9$ and $6 x+8 y=18$?
A. 0
B. 3 units
C. 9 units
D. 18 units
10. If a and b are the roots of the equation $2 x^{2}+6 x+b=0(b<0)$ the [(a/b)+(b/a)] equals
A. 2
B. -2
C. 18
D. none of these
11. What is the solution set of the equation $x^{4}-26 x^{2}+25=0$?
A. $\{-5,-1,1,5\}$
B. $\{-5,-1\}$
C. $\{1,5\}$
D. $\{-5,0,1,5\}$
12. If H is the harmonic mean between P and Q, then the value of $((\mathrm{H} / \mathrm{P})+(\mathrm{H} / \mathrm{Q}))$ is :
A. $\mathrm{PQ} /(\mathrm{P}+\mathrm{Q})$
B. $(\mathrm{P}+\mathrm{Q}) / \mathrm{PQ}$
C. 2
D. none of these
13. The first, second and the middle terms of an A.P are a, b, c respectively. Then their sum is equal to:
A. $2(\mathrm{c}-\mathrm{a}) /(\mathrm{b}-\mathrm{a})$
B. $[2 c(c-a) /(b-a)]+c$
C. $2 c(c-a) /(b-a)$
D. none of these
14. The number of ways in which ($m * n$) students can be distributed equally among m sections is:
A. $(m!)^{n} / n!$
B. $(m!)^{n} /(n!)^{m}$
C. $\left(m^{*} n\right)!/ m!n!$
D. $\left(m^{*} n\right)^{m}$
15. The number of six digit numbers that can be formed from the digits $1,2,3,4,5,6,7$ so that the digits do not repeat and the terminal digits are even is
A. 144
B. 72
C. 288
D. 720
16. The number of divisors of the form $4 n+2(n \geq 0)$ of the integer 240 is
A. 4
B. 10
C. 8
D. 9
17. Four couples (husband and wife) decide to form a committee of four members. The number of different committees that can be formed in which no couple finds a place is
A. 10
B. 12
C. 14
D. 16
18. If the second, third and fourth term in the expansion of $(x+a)^{n}$ are 240 , 720 and 1180 respectively, then the value of n is
A. 15
B. 20
C. 10
D. 5
19. The coefficient of x^{4} in the expansion of $\left[(x / 2)-\left(3 / x^{2}\right)\right]^{10}$ is equal to
A. $405 / 256$
B. $504 / 259$
C. $2450 / 263$
D. none of the above
20. The lines $p x+q y+r=0, q x+r y+p=0$ and $r x+p y+q=0$ are concurrent if
A. $\mathrm{pq}+\mathrm{qr}+\mathrm{rp}=0$
B. $p^{2}+q^{2}+r^{2}=2 p q r$
C. $p^{3}+q^{3}+r^{3}=3 p q r$
D. none of these
21. The value of λ for which the system of equations $3 x-y+4 z=3, x+2 y-3 z=-$ $2,6 x+5 y-\lambda z=-3$ has infinite number of solutions is
A. 5
B. -5
C. 0
D. -1
22. If $a^{2}+4 b^{2}=12 a b$, then $\log (a+2 b)=$
A. $(\log a+\log b-\log 2) / 2$
B. $\log (\mathrm{a} / 2)+\log (\mathrm{b} / 2)+\log 2$
C. $(\log a+\log b+4 \log 2) / 2$
D. $(\log a-\log b+4 \log 2) / 2$
23. The number $\log _{2} 7$ is
A. an integer
B. a rational
C. an irrational
D. a prime number.
24. Let A be a skew-symmetric matrix of an odd order. Then $\operatorname{det}(A)$ is equal to
A. 0
B. 1
C. -1
D. 2
25. If T is an identity matrix of order 3 , then $\mathrm{T}^{2}+2 \mathrm{~T}$ is equal to
A. T
B. 2 T
C. 3 T
D. 4 T
26. The range of the function $f(x)=1 /(2-\cos (3 x))$ is equal to
A. $[-1 / 3,0]$
B. R
C. $[1 / 3,1]$
D. none of these
27. Which of the following functions is an even function?
A. $\mathrm{f}(\mathrm{x})=\log \left(\mathrm{x}+\left(1+\mathrm{x}^{2}\right)^{1 / 2}\right)$
B. $f(x)=\log _{e}((1+x) /(1-x))$
C. $f(x)=x\left(\left(a^{x}+1\right) /\left(a^{x}-1\right)\right)$
D. $f(x)=x \sin ^{2} x-x^{3}$
28. The value of $\lim \left[\left(\sin (x)-x+x^{3} / 6\right) / x^{5}\right]$ as x tends to 0 is
A. 0
B. 1
C. $1 / 60$
D. $1 / 120$
29. If $y=\sin ^{n} x \cos n x$ then $d y / d x$ is equal to
A. $n \sin ^{n-1} x \cos ((n+1) x)$
B. $n \sin ^{n-1} x \sin ((n+1) x)$
C. $n \sin ^{n-1} x \cos ((n-1) x)$
D. $n \sin ^{n-1} x \cos (n x)$
30. If $x=a(\cos \theta+\theta \sin \theta)$ and $y=a(\sin \theta-\theta \cos \theta)$, then $d y / d x$ is equal to
A. $\cos \theta$
B. $\tan \theta$
C. $\sec \theta$
D. $\operatorname{cosec} \theta$
31. The value of k in order that $f(x)=\sin x-\cos x-k x+b$ decreases for all real values is given by :
A. $\mathrm{k}<1$
B. $\mathrm{k}>1$
C. $\mathrm{k}>2^{1 / 2}$
D. $\mathrm{k}<2^{1 / 2}$
32. The two curves $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}=2$,
A. cut at right angles
B. touch each other
C. cut at an angle $\pi / 3$
D. cut at an angle $\pi / 4$
33. A circular plate expands under the influence of heat so that its radius increases from 5 cm to 5.06 cm . The approximate increase in the area of the circular plate is:
A. $0.88 \mathrm{~cm}^{2}$
B. $1.88 \mathrm{~cm}^{2}$
C. $2.88 \mathrm{~cm}^{2}$
D. none of these
34. If $\int\left[2^{x} /\left(\left(1-4^{x}\right)^{1 / 2}\right)\right] d x=k \sin ^{-1}\left(2^{x}\right)+C(C$ is an arbitrary constant $)$, then $k=$
A. $\log 2$
B. $0.5 \log 2$
C. 0.5
D. $1 / \log 2$
35. $\int(1-\cos x) \operatorname{cosec}^{2} x d x$ equals
A. $\tan (x / 2)+C$
B. $\cot (\mathrm{x} / 2)+\mathrm{C}$
C. $0.5 \tan (x / 2)+C$
D. $2 \tan (\mathrm{x} / 2)+\mathrm{C}$
36. The area bounded by the curve $y=2 x-x^{2}$ and the straight line $y=-x$ is given by
A. $9 / 2$
B. $43 / 6$
C. $35 / 6$
D. none of these
37. Area of the region bounded by the curve $y=\tan x$, tangent drawn to the curve at $x=\Pi / 4$ and the x-axis is equal to
A. $\log (\sqrt{2})$
B. $\log (\sqrt{ } 2)+0.25$
C. $\log (\sqrt{ } 2)-0.25$
D. 0.25
38. Which of the following is the integrating factor of $x \log x d y / d x+y=2 \log x$?
A. x
B. e^{x}
C. $\log x$
D. $\log (\log x)$
39. The differential equation representing the family of curves $y^{2}=2 c\left(x+c^{1 / 2}\right)$ where c is a positive parameter, is of
A. order 1, degree 3
B. order 2, degree 2
C. order 3, degree 3
D. order 4, degree 4
40. The solution of the differential equation $\left(1+x^{2}\right) d y / d x+1+y^{2}=0$ is
A. $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} c$
B. $\tan ^{-1} y-\tan ^{-1} x=\tan ^{-1} c$
C. $\tan ^{-1} x-\tan ^{-1} y=\tan c$
D. $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} c$
41. The differential equation of a simple harmonic oscillator of period $2 \Pi / n$ is
A. $d^{2} x / d t^{2}+n x=0$
B. $\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}+\mathrm{n}^{2} \mathrm{x}=0$
C. $\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}-\mathrm{n}^{2} \mathrm{x}=0$
D. $d^{2} x / d t^{2}+x / n^{2}=0$
42. The possible value of p for which the line $\mathrm{x} \cos \varphi+\mathrm{y} \sin \varphi=\mathrm{p}$ is a tangent to the circle $\quad x^{2}+y^{2}-2 q x \cos \varphi-2 q y \sin \varphi=0$ is / are:
A. 0 and q
B. q and $2 q$
C. 0 and $2 q$
D. q
43. If one end of the diameter of the circle $x^{2}+y^{2}-8 x-4 y+c=0$ is $(-3,2)$, then the other end is
A. $(5,3)$
B. $(6,2)$
C. $(1,-8)$
D. $(11,2)$
44. The line $y=m x+1$ is a tangent to the parabola $y^{2}=4 x$ if
A. $m=1$
B. $m=2$
C. $m=4$
D. $m=3$
45. $x^{2}-4 y^{2}-2 x+16 y-24=0$ represents :
A. a pair of straight lines
B. an ellipse
C. a hyperbola
D. a parabola
46. The eccentricity of the ellipse $9 x^{2}+5 y^{2}-30 y=0$ is equal to
A. $1 / 3$
B. $2 / 3$
C. $3 / 4$
D. none of these
47. The points with position vectors $7 \mathrm{i}-4 \mathrm{j}+7 \mathrm{k}, \mathrm{i}-6 \mathrm{j}+10 \mathrm{k},-\mathrm{i}-3 \mathrm{j}+4 \mathrm{k}$ and $5 \mathrm{i}-\mathrm{j}+\mathrm{k}$ form a:
A. square
B. rectangle
C. parallelogram
D. rhombus
48. One set containing 5 numbers has mean=8 and variance $=24$ and the second set containing 3 numbers has mean $=8$ and variance $=24$. The variance of the combined set is :
A. 42
B. 24
C. 20
D. 25
49. Bag A contains 2 white and 3 red balls and bag B contains 4 white and 5 red balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it is drawn from bag B is
A. $5 / 9$
B. $4 / 9$
C. $25 / 52$
D. none of these
50. The probability that A can solve a problem is $2 / 3$ and B can solve is $3 / 4$. If both attempt the problem, what is the probability that the problem gets solved?
A. $11 / 12$
B. $7 / 12$
C. 5/12
D. $9 / 12$
