## UG (except BBA) CET Sample Paper

## PHYSICS: (50 Ouestions)

1. The capacity of a vessel is $5700 \mathrm{~m}^{3}$. The vessel is filled with water. Suppose that it takes 12 hours to drain the vessel, what is the mass flow rate (in $\mathrm{kg} / \mathrm{s}$ ) of water from the vessel? The density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$.
A. $132 \mathrm{~kg} / \mathrm{s}$
B. $100 \mathrm{~kg} / \mathrm{s}$
C. $32 \mathrm{~kg} / \mathrm{s}$
D. $152 \mathrm{~kg} / \mathrm{s}$
2. The expression for the centripetal force depends upon mass of the body, speed of the body and the radius of the circular path. Find the expression for the centripetal force.
A. $\mathrm{F}=\mathrm{mv}^{2} / 2 \mathrm{r}^{3}$
B. $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}$
C. $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}^{2}$
D. $F=m^{2} v^{2} / 2 r$
3. A vector a makes an angle of 30 degrees and vector $b$ makes an angle of 120 degrees with the $x$-axis. The magnitude of these vectors are 3 and 4 respectively. The magnitude of their resultant is
A. 3 units
B. 4 units
C. 5 units
D. 1 unit
4. The angle between the two vectors $A=3 i+2 j+4 k$ and $B=2 i+j-2 k$ is equal to
A. 180 degrees
B. 90 degrees
C. 0 degrees
D. 240 degrees
5. Sound moves with higher velocity if
A. Pressure of the medium is decreased
B. Temperature of the medium is increased
C. Humidity of the medium is increased
D. Both B and C above
6. A particle moves along a straight line such that its position x at any time t is given by the equation $x=3 t^{2}-t^{3}$, where $x$ is in metre and $t$ is in seconds. Then
A. At $\mathrm{t}=0$, the acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}$
B. $x$ - $t$ curve has a maximum at 8 m
C. x -t curve has a maximum at 2 s
D. both A and C are correct
7. The motion of a body falling from rest in a resisting medium is described by the equation $d v / d t=a-b v$, where $a$ and $b$ are constants. The velocity at any time $t$ is
A. $a\left(1-b^{2 t}\right)$
B. $\left[a\left(1-e^{-b t}\right)\right] / b$
C. abe ${ }^{-t}$
D. $a b^{2}(1-t)$
8. A particle is projected at an angle $\alpha$ with the horizontal from the foot of the inclined plane making an angle $\beta$ with the horizontal. Which of the following expression holds good if the particle strikes the inclined plane normally?
A. $\cot \beta=\tan (\alpha-\beta)$
B. $\cot \beta=2 \tan (\alpha-\beta)$
C. $\cot \alpha=\tan (\alpha-\beta)$
D. $\cot \alpha=2 \tan (\alpha-\beta)$
9. A 0.1 kg body moves at a constant speed of $10 \mathrm{~m} / \mathrm{s}$. It is pushed by applying a constant force for 2 sec . Due to this force , it starts moving exactly in the opposite direction with a speed of $4 \mathrm{~m} / \mathrm{s}$. Then ,
A. The deceleration of the body is $7 \mathrm{~m} / \mathrm{s}^{2}$
B. The magnitude of the change in momentum is $1.4 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$
C. The impulse of the force is 1.4 Ns
D. All the above
10. A 40 N block is supported by two ropes. One rope is horizontal and the other makes an angle of 30 degrees with the ceiling. The tension in the rope attached to the ceiling is approximately equal to
A. 80 N
B. 40 N
C. 34.6 N
D. 46.2 N
11. Two buses $A$ and $B$ are moving around concentric circular paths of radii $r_{a}$ and $r_{b}$. If the two buses complete circular paths in the same time, the ratio of the linear speeds is
A. 1
B. $\mathrm{r}_{\mathrm{a}} / \mathrm{r}_{\mathrm{b}}$
C. $\mathrm{r}_{\mathrm{b}} / \mathrm{r}_{\mathrm{a}}$
D. none of these
12. A point on the periphery of a rotating disc has its acceleration vector making an angle of 30 degrees with the velocity vector. The ratio of the centripetal acceleration to the tangential acceleration is equal to
A. $\sin 30$
B. $\cos 30$
C. $\tan 30$
D. none of these
13. Which of the following is/are not conservative force?
A. Gravitational force
B. Electrostatic force in a columbic field
C. Frictional force
D. All the above
14. The potential energy of a particle of mass 5 kg moving in the $\mathrm{x}-\mathrm{y}$ plane is given by $U=(-7 x+24 y) J$. ( $x$ and $y$ are in meter). If the particle starts from rest from the origin then the speed of the particle at $t=2 \sec$ is
A. $5 \mathrm{~m} / \mathrm{s}$
B. $14 \mathrm{~m} / \mathrm{s}$
C. $17.5 \mathrm{~m} / \mathrm{s}$
D. $10 \mathrm{~m} / \mathrm{s}$
15. A stone is tied to a string of length $L$ is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed $U$. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is
A. $\sqrt{ }\left(\mathrm{U}^{2}-2 \mathrm{gL}\right)$
B. $\sqrt{ }(2 \mathrm{gL})$
C. $\sqrt{ }\left(\mathrm{U}^{2}-\mathrm{gL}\right)$
D. $\sqrt{ }\left(2\left(\mathrm{U}^{2}-\mathrm{gL}\right)\right)$
16. If the momentum of a body is constant, the mass-velocity graph is
A. Circle
B. Straight line
C. Rectangular hyperbola
D. Parabola
17. A body is dropped and observed to bounce a height greater than the dropping height. Then
A. The collision is elastic
B. There is an additional source of energy during collision
C. It is not possible
D. This type of phenomenon does not occur in nature
18. The ratio of the radii of gyration of a circular disc and a circular ring of the same radii about the tangential axis in the plane is
A. $1: 2$
B. $51 / 2: 61 / 2$
C. $2: 3$
D. $2: 1$
19. The gravitational force of attraction between two spherical bodies, each of mass 1 kg placed at 10 m apart $\left(\mathrm{G}=6.67^{*} 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)$ is
A. $6.67^{*} 10^{-13} \mathrm{~N}$
B. $6.67 * 10^{-11} \mathrm{~N}$
C. $6.67 * 10^{-7} \mathrm{~N}$
D. None of these
20. A particle executing simple harmonic motion has an amplitude of 1 m and a time period of 2 seconds. At $t=0$, net force on the particle is 0 . The equation of displacement of the particle is
A. $X=\sin (\pi t)$
B. $X=\cos (\pi t)$
C. $X=\sin (2 \pi t)$
D. $X=\cos (2 \pi t)$
21. A particle executes a simple harmonic motion. The amplitude of vibration of the particle is 2 cm . The displacement of the particle in one time period is
A. 1 cm
B. 2 cm
C. 4 cm
D. Zero
22. When equal volumes of two substances are mixed, the specific gravity of the mixture is 4 . When equal weights of the same substances are mixed, the specific gravity of the mixture is 3 . The specific gravity of the two substances would be
A. 6 and 2
B. 3 and 4
C. 2.5 and 3.5
D. 5 and 3
23. Bernoulli's principle is applicable to points
A. In a steadily flowing liquid
B. In a streamline
C. In a straight line perpendicular to a streamline
D. In any non-viscous liquid
24. The equation of a wave travelling on a stretched string along the x -axis is $y=a e^{-(b x+c t)}$. The direction of propagation of the wave is
A. Along negative $y$-axis
B. Along positive $y$-axis
C. Along negative x -axis
D. Along positive x -axis
25. If a stone is dropped into a lake from a tower, the sound of splash heard is by a man after 11.5s, then what is the height of the tower?
A. 1000 m
B. 100 m
C. 500 m
D. 150 m
26. The equation of a sound wave in air is $P=0.01 \cos (1000 t-3 x)$, where $P, x, t$ are in SI units. The bulk modulus of elasticity is $1.4^{*} 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. The displacement amplitude is
A. 0.24 m
B. $0.24 * 10^{-7} \mathrm{~m}$
C. $8^{*} 10^{-7} \mathrm{~m}$
D. 10 m
27. The temperature at which phase transition occurs depends on
A. Pressure
B. Volume
C. Density
D. Mass
28. Four gas molecules of a gas have speeds $1,2,3,4 \mathrm{~km} / \mathrm{s}$. The value of the rootmean square speed of the gas molecules is
A. $0.5 * \sqrt{ }(15) \mathrm{km} / \mathrm{s}$
B. $0.5 * \sqrt{(10)} \mathrm{km} / \mathrm{s}$
C. $2.5 \mathrm{~km} / \mathrm{s}$
D. $\sqrt{ }(15 / 2) \mathrm{km} / \mathrm{s}$
29. What work will be done when 3 moles of an ideal gas is compressed to half the initial volume at a constant temperature of 300 K ?
A. -5188 J
B. 5000 J
C. 5188J
D. -5000 J
30. A body at temperature of 727 degrees Celsius has a surface area of $5 \mathrm{~cm}^{2}$, and radiates 300J of energy per minute. The emissivity e $=$ ? (Boltzmann constant $=$ $5.67^{*} 10^{-8}$ watt $\mathrm{m}^{2} \mathrm{~K}^{4}$ )
A. 0.18
B. 0.02
C. 0.2
D. 0.15
31. Find the position of a 1 cm tall object which is placed 8 cm in front of a concave mirror of radius of curvature 24 cm
A. $\quad 24 \mathrm{~cm}$
B. $\quad 25 \mathrm{~cm}$
C. $\quad 26 \mathrm{~cm}$
D. $\quad 27 \mathrm{~cm}$
32. In Young's double slit experiment, when violet light of wavelength 435.8 nm is used, then 84 fringes are seen in the field of view, but when sodium light of a certain wavelength is used, 62 fringes are seen in the field of view, calculate the wavelength of sodium light:
A. $\quad 689.3 \mathrm{~nm}$
B. $\quad 590.4 \mathrm{~nm}$
C. $\quad 552.3 \mathrm{~nm}$
D. $\quad 642.9 \mathrm{~nm}$
33. A point charge is projected along the axis of a circular ring of charge $Q$ and radius $10 \sqrt{2} \mathrm{~m}$. The distance of the point charge from the centre of the ring, where the acceleration of the charged particle is maximum will be
A. $\quad 10 \mathrm{~cm}$
B. $\quad 20 \mathrm{~cm}$
C. $\quad \infty$
D. None of these
34. What should be the flux linked with the cube if a point charge q is placed at one corner of the cube?
A. $\quad \mathrm{q} / \varepsilon_{0}$
B. $\quad \mathrm{q} / 2 \varepsilon_{0}$
C. $\quad \mathrm{q} / 3 \varepsilon_{0}$
D. $\quad \mathrm{q} / 8 \varepsilon_{0}$
35. Over a thin ring of radius $R$ a charge $Q$ is distributed non-uniformly. Calculate the work done of the force field in displacing a point charge $q_{1}$ from centre of the ring to infinity :
A. $\quad \mathrm{Qq}_{1} / 4 \pi \varepsilon_{0} \mathrm{R}$
B. $\quad \mathrm{Qq}_{1} / 2 \pi \varepsilon_{0} \mathrm{R}$
C. $\quad \mathrm{Qq}_{1} / \pi \varepsilon_{0} \mathrm{R}$
D. None of these
36. The angle between the electric lines of force and an equipotential surface is
A. 45 degrees
B. $\quad 90$ degrees
C. 0 degrees
D. 180 degrees
37. Two capacitors having capacitances $8 \mu \mathrm{~F}$ and $16 \mu \mathrm{~F}$ having breaking voltages of 20 V and 80 V respectively. They are combined in series. The maximum charge they can store individually in the combination is
A. $\quad 1280 \mu \mathrm{C}$
B. $\quad 200 \mu \mathrm{C}$
C. $\quad 160 \mu \mathrm{C}$
D. None of these
38. Calculate the work done against the electric force if the separation of the capacitor of area $S$ is increased from $\mathrm{x}_{1}$ to $\mathrm{x}_{2}$. Assume charge q on the capacitor is constant.
A. $\quad \mathrm{W}=\mathrm{q}^{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) / \varepsilon_{0} \mathrm{~S}$
B. $\quad \mathrm{W}=\mathrm{q}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) / \varepsilon_{0} \mathrm{~S}$
C. $\quad W=q^{2}\left(x_{2}-x_{1}\right) / 2 \varepsilon_{0} S$
D. $\quad \mathrm{W}=\mathrm{q}^{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) / 4 \varepsilon_{0} \mathrm{~S}$
39. Two resistors of $6 \Omega$ and $9 \Omega$ are connected in series to a 120 V source. The power consumed by the $6 \Omega$ resistor is:
A. $\quad 384 \mathrm{~W}$
B. $\quad 576 \mathrm{~W}$
C. $\quad 1500 \mathrm{~W}$
D. $\quad 1800 \mathrm{~W}$
40. The resistance of a 50 cm long wire is $10 \Omega$. The wire is stretched to a uniform wire of length 100 cm . The resistance will now be :
A. $\quad 15 \Omega$
B. $\quad 30 \Omega$
C. $\quad 20 \Omega$
D. $\quad 40 \Omega$
41. The earth's magnetic field at a certain point is 0.70 Gauss. This field is to be annulled by the magnetic field at the centre of a circular conducting loop 5 cm in radius. The requires current is about
A. 0.66 A
B. 5.6 A
C. 0.28 A
D. 2.8 A
42. The dimension of $1 / \sqrt{ }\left(\mu_{0} \varepsilon_{0}\right)$ is the same as
A. $\mathrm{E} / \mathrm{B}$
B. $B / E$
C. $\mathrm{E}^{2} / \mathrm{B}^{2}$
D. $\sqrt{ }(\mathrm{E} / \mathrm{B})$
43. Calculate the force acting between two magnets, placed in end on position 0.1 m apart from their centres. Given that the magnetic moment of each magnet is $5 \mathrm{Am}^{2}$
A. $\quad 0.6 \mathrm{~N}$
B. $\quad 0.8 \mathrm{~N}$
C. $\quad 0.15 \mathrm{~N}$
D. $\quad 0.2 \mathrm{~N}$
44. A bar magnet of magnetic moment $2.5 \mathrm{~J} / \mathrm{T}$ is placed in a magnetic field of 0.2 T . What amount of work is done in turning the magnet from parallel to antiparallel position relative to the field direction?
A. $\quad 1 \mathrm{~J}$
B. 2 J
C. 3 J
D. 4 J
45. The magnetic flux $\varphi$ (in weber) in a closed circuit of resistance $10 \Omega$ varies with time $t$ (in seconds) according to the equation $\varphi=6 t^{2}-5 t+1$. The magnitude of induced current at $\mathrm{t}=0.25 \mathrm{~s}$ is equal to
A. $\quad 1.2 \mathrm{~A}$
B. $\quad 0.8 \mathrm{~A}$
C. $\quad 0.6 \mathrm{~A}$
D. $\quad 0.2 \mathrm{~A}$
46. When the current changes from +2 A to -2 A in 0.05 s , an emf of 8 V is induced in a coil. The coefficient of self-induction of the coil is
A. $\quad 0.1 \mathrm{H}$
B. $\quad 0.2 \mathrm{H}$
C. $\quad 0.4 \mathrm{H}$
D. $\quad 0.8 \mathrm{H}$
47. An A.C source of voltage $\mathrm{V}=100 \sin \pi \mathrm{t}$ is connected to a resistor of resistance 20 $\Omega$. The rms value of the current through the resistor is
A. $\quad 10 \mathrm{~A}$
B. $\quad 10 / \sqrt{2} \mathrm{~A}$
C. $\quad 5 / \sqrt{ } 2 \mathrm{~A}$
D. None of these
48. A radiation is incident on the metal surface of work function 2.3 eV . The wavelength of incident radiation is 600 nm . If the total energy of the incident radiation is 23 J , then the number of photoelectrons is
A. Zero
B. $\quad>10^{4}$
C. $\quad=10^{4}$
D. None of these
49. If the radius of the first Bohr's orbit is $x$, then the de Broglie wavelength of electron in the $3^{\text {rd }}$ orbit is nearly
A. $2 \pi x$
B. $6 \pi x$
C. 9 x
D. $x / 3$
50. In case of Compton effect, which of the following is applicable :
A. Energy conservation
B. Momentum conservation
C. Charge conservation
D. All the above
